Конформное отображение. Конформные отображения Вопросы для самопроверки

Здесь мы подробнее расскажем о геометрических методах теории аналитических и обобщенных аналитических функций, которыми больше всего будем пользоваться в приложениях.

§ 10. Задача Римана

Об этой основной граничной задаче теории конформных отображений уже говорилось в предыдущей главе. Она заключается в построении конформного отображения одной области на другую.

Существование и единственность. Начнем с замечания, что достаточно научиться конформно отображать произвольную односвязную область на круг, и тогда мы сможем отображать конформно друг на друга любые две такие области.

Это замечание основано на двух простых свойствах конформных отображений: 1) отображение обратное и конформному отображению и 2) сложное отображение составленное из двух конформных отображений (т. е. отображение ), снова являются конформными отображениями. Свойства ясны из определения конформного отображения как взаимно однозначного аналитического преобразования и из правил дифференцирования обратных и сложных функций.

Имея эти свойства, обосновать сделанное замечание совсем нетрудно: если функции конформно отображают соответственно области на единичный

круг то функция будет отображать на

Задача Римана решена до конца в начале этого столетия. Оказалось, что любую односвязную область, граница которой состоит более, чем из одной точки, можно конформно отобразить на единичный круг. В этом состоит знаменитая теорема Римана, которую он сформулировал еще в 1851 г., подкрепил физическими соображениями, но не доказал (точнее, его доказательство имело существенный пробел).

Займемся вопросом о том, насколько определена задача Римана, сколько решений она имеет при заданных областях Согласно замечанию, для решения этого вопроса достаточно выяснить, сколькими способами можно конформно отобразить единичный круг на себя. Нетрудно проверить, что при любом комплексном и любом действительном числе функция

конформно отображает круг на себя (в самом деле, при имеем и, следовательно, т. е. (1) преобразует единичную окружность в себя; кроме того, оно взаимно однозначно, ибо уравнение (1) однозначно разрешимо относительно и переводит точку а круга в его центр). Отображение (1) зависит от трех действительных параметров - двух координат точки а, переходящей в центр круга, и числа 0, изменение которого означает поворот круга относительно центра.

Можно доказать, что формула (1) содержит все конформные отображения единичного круга на себя. Это означает, что тремя действительными параметрами и исчерпывается произвол в решении задачи Римана:

конформное отображение одной области на другую определится однозначно, если задать соответствие трех пар граничных точек (положение точки на границе задается одним параметром) или соответствие одной пары внутренних точек (два параметра) и еще одной пары граничных точек (один параметр). Такие условия, однозначно определяющие отображение - они называются условиями нормировки - могут иметь различный вид, но каждый раз эти условия должны определять три параметра.

Примеры. Укажем несколько простейших примеров конформных отображений.

1) Отображение внешности круга на себя. Функцию (1) можно рассматривать также как отображающую внешность т. е. область на себя; в бесконечность она переводит точку которая называется симметричной с а относительно единичной окружности

2) Верхняя полуплоскость на круг тоже отображается дробнолинейной функцией:

здесь а - произвольная точка верхней полуплоскости она переводится при отображении (2) в центр круга; точка окружности, в которую переходит бесконечная точка плоскости (предел правой части (2) при очевидно, равен ).

На рис. 22 показано, во что переходят прямые h - это окружности, касающиеся единичной в точке

3) Внешность единичного круга на внешность отрезка отображается так называемой функцией Жуковского

Окружности переходят при этом в эллипсы с полуосями и с фокусами ±1, а лучи в дуги гипербол, ортогональных к эллипсам (рис. 23).

4) Полоса на единичный круг отображается функцией

Вертикальные прямые и горизонтальные отрезки при этом переходят в «меридианы» и «параллели» (рис. 24).

5) Верхняя полуплоскость с выброшенным круговым сегментом на верхнюю полуплоскость при нормировке отображается функцией

где а и а - параметры сегмента (рис. 25), а с - действительная постоянная (отметим, что наши условия нормировки задают лишь два действительных параметра, поэтому третий остается произвольным).

Для приложений эта формула слишком громоздка. При малых а и а, пользуясь первыми членами тейлоровских разложений, ее можно заменить приближенной формулой

Можно еще заметить, что с точностью до малых высших порядков дает площадь с выброшенного сегмента, поэтому (6) переписывается в виде

6) Круг с выброшенной малой луночкой на круг отображается также достаточно громоздко записывающейся функцией. Приближенную формулу для такого отображения при условии, что площадь выброшенной луночки мала, можно записать так:

здесь вершина луночки или (с той же точностью) другая ее точка.

7) Такая же приближенная формула для отображения полосы с выброшенной луночкой малой площади с на полосу имеет вид

где а - абсцисса одной из точек луночки; гиперболический тангенс.

Течение в канале. Уменье решать задачу Римана определяет успех решения некоторых задач гидродинамики. Мы проиллюстрируем это на классических примерах задач обтекания тел установившимися потоками идеальной несжимаемой жидкости. Придется, конечно, предполагать, что тела имеют форму бесконечных цилиндров (с произвольными направляющими линиями), чтобы можно было воспользоваться схемой плоского движения.

Пусть нужно найти течение в канале со стенками, которые перпендикулярны к некоторой плоскости и пересекают ее по двум бесконечным кривым без общих точек (рис. 26), причем скорости течения параллельны этой плоскости и на всех перпендикулярах к ней одинаковы. Поле скоростей в канале описывается плоским полем в полосе ограниченной кривыми

Как мы видели в предыдущей главе, предположение об отсутствии в потоке источников и вихрей приводит к выводу о существовании комплексного потенциала - аналитической в функции Найти течение - значит найти эту функцию.

Поток должен обтекать стенки канала, т. е. каждая из кривых должна быть линией тока это дает граничное условие задачи. Мы можем задать

еще расход потока который, как показано в прошлой главе, равен

где у - линия с концами т. е. любое поперечное сечение потока. Так как потенциал нас интересует с точностью до постоянного слагаемого, мы можем считать, что на на Г.

В такой постановке задача еще очень неопределенна. Например, для случая, когда является прямой полосой ее решением служит любая функция

При любых действительных и целых (мнимая часть обращается в нуль при Чтобы поставить задачу более четко, придется предположить, что ширина полосы остается ограниченной в бесконечности, наложить на некоторые условия гладкости и рассматривать лишь течения с ограниченной скоростью на бесконечности. Можно доказать, что при этих дополнительных ограничениях решением задачи будет лишь конформное отображение области на полосу с нормировкой . Это отображение определено с точностью до (действительного) постоянного слагаемого, которое не существенно, т. е. задача обтекания в принятых ограничениях решается однозначно. Ее решение, таким образом, сведено к решению задачи Римана.

Пусть однозначная функция определена в некоторой области и пусть точки и принадлежат области .

Определение. Если существует конечный предел отношения , когда по любому закону стремится к нулю, то:

1) этот предел называется производной функции в точке и обозначается символом

2) в этом случае функция называется дифференцируемой в точке .

Все правила и формулы дифференцирования функции действительного переменного остаются в силе и для функций комплексного переменного.

Теорема. Для того, чтобы функция была дифференцируема в точке , необходимо и достаточно, чтобы:

1) действительные функции и были дифференцируемы в точке *) ;

2) в этой точке выполнялись условия

, (4.2)

называемые условиями Коши-Римана (C.-R. ) или Даламбера-Эйлера.

При выполнении условий (C.-R .) производная функции может быть найдена по одной из следующих формул:

Приведем два определения, имеющих фундаментальное значение в теории функции комплексного переменного.

Определение. Функция называется аналитической в области , если она дифференцируема в каждой точке этой области.

Определение. Функция называется аналитической в точке , если она является аналитической в некоторой окрестности точки , т.е. если функция дифференцируема не только в данной точке, но и в ее окрестности.

Из приведенных определений видно, что понятия аналитичности и дифференцируемости функции в области совпадают, а аналитичность функции в точке и дифференцируемость в точке – разные понятия. Если функция аналитична в точке, то она, безусловно, дифференцируема в ней, но обратное может и не иметь места. Функция может быть дифференцируема в точке, но не быть дифференцируемой ни в какой окрестности этой точки, в таком случае она не будет аналитической в рассматриваемой точке.

Условием аналитичности функции в области является выполнимость условий Коши–Римана для всех точек этой области.

Связь аналитических функций с гармоническими . Любая ли функция двух переменных и может служить действительной и мнимой частью некоторой аналитической функции?



Если функция аналитическая в области , то функции и являются гармоническими, т.е удовлетворяют уравнению Лапласа.

и .

Однако если функции и являются произвольно выбранными гармоническими функциями, то функция , вообще говоря, не будет аналитической, т.е. условия для них не всегда будут выполняться.

Можно построить аналитическую функцию по одной заданной гармонической функции (например, ), подобрав другую так, чтобы удовлетворялись условия . Условия (4.2) позволяют определить неизвестную функцию (например, ) по ее двум частным производным или, что то же самое, по ее полному дифференциалу. Отыскивание гармонической функции по ее дифференциалу есть известная из действительного анализа задача интегрирования полного дифференциала функции двух переменных.

Геометрический смысл модуля и аргумента производной. Пусть функция дифференцируема в области и . Функция отобразит точку плоскости в точку плоскости , кривую , проходящую через точку в кривую , проходящую через (рис.4.1).

Модуль производной есть предел отношения бесконечно малого расстояния между отображенными точками и к бесконечно малому расстоянию между их прообразами и . Поэтому величину можно рассматривать геометрически как коэффициент растяжения (если ) в точке при отображении области в области , осуществляемом функцией

В каждой точке области в каждом направлении коэффициент растяжения будет свой. Для аргумента производной можно записать

где и это соответственно углы и , которые векторы и образуют с действительной осью (рис.4.1). Пусть и углы, образованные касательными к кривой и в точках и с действительной осью. Тогда при , а , поэтому определяет угол, на который нужно повернуть касательную к кривой в точке , чтобы получить направление к касательной к кривой в точке .

Если рассмотреть две кривые и , и , то углы и (рис. 4.1) между их касательными, вообще говоря, неравные.

Определение. Отображение области на область , обладающее свойствами постоянства растяжений () в любом направлении и сохранения (или консерватизма) углов между двумя кривыми, пересекающимися в точке , называется конформным (подобным в малом). Отображение, осуществляемое аналитической функцией, является конформным во всех точках, в которых .

УПРАЖНЕНИЯ

55. Показать, что функция дифференцируема и аналитична во всей комплексной плоскости. Вычислить ее производную.

Решение. Найдем и . По определению имеем . Следовательно, .

, ,

Откуда , .

Как видно, частные производные непрерывны на всей плоскости, и функции и дифференцируемы в каждой точке плоскости. Условия выполняются. Следовательно, дифференцируема в каждой точке плоскости, а значит, и аналитична на всей плоскости . Поэтому производную можно найти по одной из формул (4.3):

Наконец, производная может быть найдена по правилам формального дифференцирования: .

56. Выяснить, является ли аналитической функция:

Решение. а) Так как , то , откуда . Как видно, первое условие (4.2) не выполняется ни при каких и . Следовательно, функция не дифференцируема ни в одной точке плоскости, а поэтому и не аналитична.

б) Имеем . Функция и дифференцируемы в каждой точке плоскости, ибо их частные производные непрерывны во всей плоскости. Но условия не выполняются ни в какой точке плоскости, кроме точки , где все частные производные равны нулю. Следовательно, функция дифференцируема только в одной точке, но не является аналитической в ней, так как по определению требуется дифференцируемость в окрестности данной точки.

Таким образом, функция не является аналитической ни при каком значении . Из приведенного примера ясно, что аналитичность функции в точке более сильное требование, чем дифференцируемость ее в этой точке.

57. Существует ли аналитическая функция, для которой ?

Решение. Проверим, является ли функция гармонической. С этой целью находим

и . Из последнего соотношения следует, что не может быть действительной, а также и мнимой частью аналитической функции.

58. Найти, если это возможно, аналитическую функцию по ее действительной части .

Решение. Прежде проверим, является ли функция гармонической. Находим , , , и . Гармоническая на всей плоскости функция сопряжена с условиями Коши-Римана , . Из этих условий получаем , . Из первого уравнения системы находим интегрированием по , считая постоянным.

где произвольная функция, подлежащая определению. Найдем отсюда и приравняем к выражению , ранее найденному: . Получим дифференциальное уравнение для определения функции , откуда

Итак, . Тогда, т.е. в данной точке происходит вращение на угол и образующие между собой угол , отображаются соответственно в лучи и , образующие между собой угол . Поэтому в точке конформность отображения нарушается в силу того, что нарушается свойство консерватизма углов: углы не сохраняются, а утраиваются.

Решении прикладных задач часто возникает необходимость преобразовать заданную область в область более простого вида, причем так, чтобы сохранялись углы между кривыми. Преобразования, наделенные таким свойством, позволяют успешно решать задачи аэро- и гидродинамики, теории упругости, теории полей различной природы и многие другие. Мы ограничимся преобразованиями плоских областей. Непрерывное отображение го = /(г) плоской области в область на плоскости называется конформным в точке, если в этой точке оно обладает свойствами постоянства растяжения и сохранения углов. Открытыеобласти и называютсяконформноэквивапентными,если существует взаимнооднозначное отображение одной из этих областей на другую, конформное в каждой точке. Теорема Римана. Любые две плоские открытые односвязные области, границы которых состоят более чем из одной точки, конформно эквивалентны. Основной проблемой при решении конкретных задач является построение по заданным плоским областям явного взаимно однозначного конформного отображения одной из них на другую. Один изспособоврешенияэтой проблемы в плоском случае - привлечение аппарата теории функций комплексного переменного. Какужеотмечалось выше, однолистная аналитическаяфункция с отличной от нуля производной осуществляет конформное отображение своей области задания на ее образ. При построении конформных отображений весьма полезно следующее правило. Принцип соответствия границ. Пусть в односвязной области Я) комплексной плоскости z, ограниченной контуром 7, задана однозначная аналитическая функция w = f(z), непрерывная в замыкании 9) и отражающая контур 7 на некоторый контур 7" комплексной п/юскости w. Если при этом сохраняется направления обхода контура, то функция w - f(z) осуществляет конформное отображение области комплексной плоскости z на область З1 комплексной плоскости w, ограниченную контуром 7" (рис. 1). Цель настоящего параграфа состоит в том, чтобы, используя найденные ранее области однолистности основных элементарных фуннций комплексного переменного, научиться строить конформные отображения открытых одно-связных плосжх областей, часто встречающихся в приложениях, надвестан- КОНФОРМНЫЕ ОТОБРАЖЕНИЯ дартныс области - верхнюю полуплоскость и единичный круг (рис. 2). Для более эффективного использо- Рис.2 вания приводимой ниже таблицы полезны некоторые простейшие преобразования комплексной плоскости. Преобразования плоскости, осуществляющие: 1. параллельный перенос (сдвиг на заданное комплексное число а) (рис. 3), Рис.3 2. поворот (на заданный угол 3. растяжение (fc > 1) ил и сжатие (рис. 5). Тем самым, преобразование вида 0 любой круг можно сделать единичным кругом с центром в нуле (рис. 6), любую полуплоскость можосделать верхней полуплоскостью, любой отрезок прямой можно преобразовать в отрезок вещественной оси (рис. 14). 2. Указанная область приведена в таблице под № 22. Применяя дробно-линейное преобразование преобразуем эту область в плоасость с разрезом по лучу Плоскость с разрезом по действительному лучу (0, +«>(Плоскость с разрезами по действительным лучам J -оо, 0] и (I, +оо[ Плоскость с разрезом по действительному лучу Плоскость с разрезом по отрезку (О, 1J № 21 1лоскость с разрезами ю лучам, лежащим ia прямой, проходящей через ачало координат по действительным лучам ]-«ю, 0] и (1. Плоскость с разрезом по действительному лучу (0, +во(Плоскость с разрезом по дуге окружности Ixl - 1, lm z > О Плоскость с разрезом по дуге окруж ности III - I, Re z > О Плоскость с разрезом по действительн ому лучу (0, Плоскость с разрезом no дуге окруж ности Плоскость с разрезом по действительному лучу [С, + со [ № 25 Полуплоскость с разрезами Полуплоскость l с разрезом по отрезку с разрезом по мнимому лучу Круг с разрезами Круг 1 с разрезом по отрезку (1/2, 1J №30 Плоскость с разрезом по отрезку {-1, 5/4] Круг Izl с разрезами по отрезкам (-1. -1/2] и (1/2, 1] № 31 Плоскость с разрезами по отрезиам I -5/4, 5/4] Круг Ijl симметричными разрезами по мнимой оси Круг lie с симметричными разрезами по действительной оси Внешность круга с разрезами Внешность единичного круга I с разрезом по отрезку и 11, 2) №34 Плоскость с разрезом по отрезку [ -1, 5/4] Плоскость с разрезом по отрезку I - 5/4, 3/4] w = e"^z Внешность единичного круга Izl > 1 с разрезами по отрезкам, являющимися продолжениями его диаметра Внешность единичного круга Iwl > 1 с разрезами по отрезкам, лежащим на действительной оси Полуируг с разрезами -г2 Nfc 36 Круг Iwl с разрезом по отрезку [ -1/4, 1] Полукруг, с разрезом по отрезку (0, i/2) Полукруг, с разрезом по отрезку }